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1. INTRODUCTION

High density surface Electromyography (sEMG), is a non-
invasive method of measuring the activity of muscles whereby
an array of electrodes is placed above the skin and a spatially
and temporally resolved measurement of the electric poten-
tial on the skin is obtained. Recent advances in high-density
sEMG measurement have opened the possibility of extracting
information about single motor units (groups of muscle fibers
controlled by the same motor neuron) from the sEMG signal.

While significant advancements have been made in identifying
the activity of individual motor units from the surface EMG
signal through EMG decomposition methods (cf. e.g. Kleine
et al. (2007)), a reliable and accurate method to determine
from the sEMG signal where the motor units are located and
where the trajectory of the muscle fibers run is not yet available.
Previous works consider spatial data only [van den Doel et al.
(2008, 2011); Liu et al. (2015)] or use simple parametric models
within a least squares approach [Mesin (2015)].

In this work we describe an approach to automate the identifica-
tion of motor units using techniques from numerical simulation
and non-linear optimization.
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their interest on the topic and Dr. Hans van Dyck (Department
of Orthodontics, University of Ulm, Germany) for helpful dis-
cussions on the subject.

2. CONDUCTION OF ACTION POTENTIALS

The basis of our approach is a mathematical model for the
physiology and for the physical situation.

2.1 Propagation of electric fields in the human body

Consider some part of the body, e.g. a limb or a part of the
head, represented by a Lipschitz domain Ω ⊂ R3 with sufficient

smooth boundary Γ. We denote the spatial variable by x ∈ Ω
and the temporal variable by t ∈ [0, T ]. We are interested in the
electric potential Φ(x, t) in Ω caused by a given distribution of
electric charge ρ(x, t).

The human body consists of various types of tissue with dif-
ferent physical properties. We assume that the different tissues
behave like a volume conductor [Stegeman et al. (2000) and
Lowery (2016)]. This means Ohm’s law is applicable and thus
Φ(x, t) can spread out in the domain and can therefore be
measured at the surface. Like the majority of previous sEMG
simulation studies we assume that at the frequencies of interest
the tissue is purely resistive and its conductivity σ(x) is in-
dependent of Φ [Stegeman et al. (2000), Lowery (2016) and
Gootzen et al. (1991)]. For skin and subcutaneous fat tissue
we assume that σ is isotropic [Stegeman et al. (2000),Lowery
(2016), Andreassen and Rosenfalck (1981) and Gootzen et al.
(1991)]. For muscle tissue however one assumes that the con-
ductivity is anisotropic, i.e. that the conductivity is higher along
the fiber axis.

On Γ we impose different kinds of boundary conditions. In the
part of the boundary Γ0 where skin is adjacent to air we note
that in general the electrical potential in air is zero. Further we
assume that there are no sources outside of the domain and thus
we get the following Robin-boundary condition

∂νΦ(s, t) = −µΦ(s, t) at Γ0

with skin conductivity µ. In addition, since we only model a
part of the body, there are artificial boundaries Γ \ Γ0 that
result from removing the rest of the body. We assume that the
potential is zero for all points which are far away from the
inner source and thus we get homogeneous Neumann boundary
conditions.

As usual we can write now the electric potential equation and
the boundary conditions in the weak form with a solution
Φ(·, t) ∈ H1(Ω)
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∫

Ω

ρ(x, t)v(x)dx =

∫

Ω

σ(x)∇Φ(x, t)∇v(x)dx

+

∫

Γ0

µΦ(s, t)v(s)ds ∀v ∈ H1(Ω)
(1)

We remark that the left hand side is well defined, for ρ(·, t) ∈
L2(Ω). However, this equation can still be formulated rigor-
ously for concentrated charges, i.e., if ρ(·, t) is a measure on Ω,
if v is chosen in W 1,p(Ω) with p > 3. Then it is known (cf. e.g.
Haller-Dintelmann et al. (2009); Alibert and Raymond (1997))
that Φ(·, t) ∈ W 1,p′

(Ω) for 1/p+ 1/p′ = 1.

In our model the charge distribution ρ(·, t) in (1) is caused
by ionic activity, the so called action potential that propagates
along the muscle fiber of a motor unit and activates the con-
traction of the muscle. Its definition will be explained in the
following two subsections.

2.2 Motor units

A motor unit is a bundle of muscle fibers which are innervated
by the same motor neuron. The motor unit is the smallest
controllable unit of a muscle. If now a muscle fiber is activated,
two action potentials propagate in opposite directions from
the neuro-muscular junction to the ends of the muscle fiber.
The velocity v with which the action potential propagates is
almost constant. In general the neuro-muscular junction lies
approximately in the middle of the fiber. In Figure 1 one can see
a schematic view of such a motor unit. As all of the fibers within

Fig. 1. Sketch of a motor unit [Stegeman et al. (2000)]

a motor unit are activated simultaneously, we can treat a bundle
of muscle fibers in a motor unit as a single fiber. For such a
fiber we assume that the radius (a few µm) is much smaller than
its length (several cm) [Andreassen and Rosenfalck (1981) and
Gootzen et al. (1991)] and thus we can represent the trajectory
of the moving action potential along the fibers by a pair of
regular curves

u1, u2 : [t0, t1] �→ Ωm

u1, u2 ∈ V := H1([t0, t1])
3.

The point u1(t0) = u2(t0) represents the neuro-muscular
junction and u1(t1) and u2(t1) represent the fiber ends. With
u̇k(τ) :=

d
dτ uk(τ) we denote the tangent vector of the curves.

2.3 Propagating action potentials

Before we define the action potential and thus also the source
density we make some assumptions. First we assume that only
one motor unit is active and thus the support of the source
density ρ is included in the curves, i.e.

ρ(x, t) = 0 ∀t ∈ [0, T ] , x /∈ uk([t0, t1]), k = 1, 2. (2)

Therefore ρ is a measure with support on uk. Furthermore we
assume that the source density fulfills the condition∫

Ω

ρ(x, ·)dz = 0 (3)

which expresses the conservation of charge in the human body.

We now consider that the source density is a spatially dis-
tributed signal, the so called action potential, which propagates
along a trajectory of a motor unit. Similar to Rosenfalck (1969)
we define the action potential in terms of an artificial real
variable z as follows:

im(z − z0(t)) :=



σinπr

2 d
2Vm(z − z0(t))

dz
if z ≤ z0

0 if z > z0

(4)

where d2Vm(z)
dz = −96 exp(z)(6z + 6z2 + z3) is the second

spatial derivative of the transmebran potential, σin is the in-
tracellular conductivity and r is the radius of the motor unit.
Here we changed the orientation of the action potential, by
replacing z through −z in Vm, and added the origin of the signal
z0(t) := v(t− t0). With this modification we generate a signal
which propagates in time from left to right along the artificial
axis as the time t increases. This moving action potential can
be seen in Figure 2 for three different times.

Fig. 2. Moving action potential at different times t

For fixed t we can now uniquely identify each point on the
trajectory uk with a point z̃ ∈ [0, Lk] by the arc length of the
corresponding curve segment. Here Lk is the the length of the
trajectory uk. Thus we can define the diffeomorphism

z(uk(τ)) :=

τ∫

t0

|u̇k(ξ)|dξ. (5)

If we combine now (2), (4) and (5) we get for the source density

ρ(x, t) =

{
im(zk(τ)− z0(t)) if x = uk(τ)

0 else
. (6)

One can now easily proof that the source density fulfills the
condition (3).

2.4 End-effects

By the simulation of sEMG it is well known, that if the fiber
length is finite, so called end-effects can appear [Gootzen et al.
(1991)] and thus we have to correct our model of the source
density. Before we can correct the model of the source density
we have to explain when and why those end- effects appear. To
this end we simulated an sEMG measurement with our current
model. In Figure 3 one can see the result of a simulation with
the current model (red graph). Here we simulated a straight
fiber and the electrode was positioned in the middle between the
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Fig. 3. Comparing the corrected simulation (dashed blue) with
the uncorrected simulation (red)

neuro-muscular junction and one end of the fiber. Comparing
the simulation with real measurements one can easily see that
there appear some unphysical peaks at the left and right end
of the measurement. We have noted before in the modeling
that the integral over the full support of the action potential is
zero (compare (3)), but since the signal is represented through a
moving stationary source it can happen that not the full support
of the signal lays on the curve which leads to an imbalance of
charges in the tissue. There are two possible situations when
such an imbalance can appear, namely when the signal arrives
at the neuro-muscular junction (t ∈ I0) and when the signal
vanishes at the fiber end(t ∈ I1). One possibility for correcting
this imbalance is given in [Gootzen et al. (1991)] by adding a
term g that represents stationary sources at the fiber-ends. These
term has then to be chosen such that∫

uk

ρ(x, t)dx+ g(uk(t0), t) + g(uk(t1), t)dx
!
= 0.

Furthermore we assume that
g(uk(t0), t) = 0 if t ∈ I1
g(uk(t1), t) = 0 if t ∈ I0

holds, which means that only one correction term is not equal
to zero at the same time. This assumption is only sufficient if
the lengths of the curve is longer than the support of the action
potential. In our model problems we will assume that this is
always true. With this assumption we get for the correction
terms

g(uk(t0), t) =



−

t1∫

t0

|u̇k(τ)|im(z(uk(τ))−z0(t))dτ if t ∈ I0

0 else

g(uk(t1), t) =



−

t1∫

t0

|u̇k(τ)|im(z(uk(τ))−z0(t))dτ if t ∈ I1

0 else
If we now add these correction terms to the source density and
simulate again the measurement, one can see that the end effects
has almost vanished (see green graph in Figure 3).

3. ADJOINT APPROACH

In the previous section we have described the mapping (u1, u2) →
Φ, where Φ is defined on the space-time cylinder Ω× [0, T ]. Al-
though our problem is merely quasi-static, the evaluation of this
mapping for reasonably high temporal and spatial resolution is
computationally expensive, in particular if this evaluation has

to take place multiple times within an optimization algorithm.
However, by sEMG measurements, only part of the information
that is present in Φ is actually used. Measurements are taken
only at finitely many electrodes Di ⊂ Γ0 on the skin, given by

ỹi(t) =

∫

Di

Φ(s, t)ds for t ∈ [0, T ].

For fixed t each measurement is thus a linear functional
li : H

1(Ω) → R with argument Φ(·, t).
To reduce the numerical effort of evaluating ỹi we now in-
troduce an alternative way to compute the measurements. The
scalar quantity

ỹi(t) = li(Φ(·, t)) for t ∈ [0, T ]

can be evaluated efficiently by the following formula

ỹ(t) =

∫

Ω

w(x)ρ(x, t)dx (7)

where w is the solution of the adjoint problem∫

Ω

σ(x)∇w(x)∇v(x)dx+

∫

Γ0

µw(s)v(s)− 111Di
v(s)ds = 0.

(8)
This formula follows from the following simple abstract com-
putation: Let Φ ∈ V satisfy:

a(Φ, v) = r(v) ∀v ∈ W,

where a : V × W → R is bilinear and r ∈ W ∗ is linear. Let
further w satisfy:

a(φ,w) = l(φ) ∀φ ∈ V,

then
l(Φ) = a(Φ, w) = r(w).

4. OPTIMAL CONTROL PROBLEM

Now we assume that we have a measurement array with J
electrodes. For each of these electrodes we can compute a
weight function wj by solving the adjoint problem (8). If we
now define the vector w = (w0, ..., wJ) we can, by using the
model (7), compute the vector valued potential with the vector
valued integral

y(t, u) =

2∑
k=1

[ t1∫

t0

w(uk(τ))|u̇k(τ)|im(zk(Θk(τ), t))dτ

+ w(uk(0))g(uk(0), t) + w(uk(1))g(uk(1), t)

] (9)

such that the potential at the electrode j is the j-th component
of y. Furthermore with ym(t) some measured potential at
the electrodes is given. For our optimal control problem we
then want to minimize the L2-norm of the distance between
measurement and simulation. Additionally we add a penalty
term which shall ensure that the speed of the curve is nearly
constant and equal in magnitude to a given reference velocity
vr. We get then the following optimization problem

min J(u) = ‖y(u, t)− ym(t)‖2L2([0,T ]) +
α

2
c(u) (10)

with

c(u) =

t1∫

t0

(|u̇(τ)| − vr)
2dτ
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that is present in Φ is actually used. Measurements are taken
only at finitely many electrodes Di ⊂ Γ0 on the skin, given by

ỹi(t) =

∫

Di

Φ(s, t)ds for t ∈ [0, T ].

For fixed t each measurement is thus a linear functional
li : H

1(Ω) → R with argument Φ(·, t).
To reduce the numerical effort of evaluating ỹi we now in-
troduce an alternative way to compute the measurements. The
scalar quantity

ỹi(t) = li(Φ(·, t)) for t ∈ [0, T ]

can be evaluated efficiently by the following formula

ỹ(t) =

∫

Ω

w(x)ρ(x, t)dx (7)

where w is the solution of the adjoint problem∫

Ω

σ(x)∇w(x)∇v(x)dx+

∫

Γ0

µw(s)v(s)− 111Di
v(s)ds = 0.

(8)
This formula follows from the following simple abstract com-
putation: Let Φ ∈ V satisfy:

a(Φ, v) = r(v) ∀v ∈ W,

where a : V × W → R is bilinear and r ∈ W ∗ is linear. Let
further w satisfy:

a(φ,w) = l(φ) ∀φ ∈ V,

then
l(Φ) = a(Φ, w) = r(w).

4. OPTIMAL CONTROL PROBLEM

Now we assume that we have a measurement array with J
electrodes. For each of these electrodes we can compute a
weight function wj by solving the adjoint problem (8). If we
now define the vector w = (w0, ..., wJ) we can, by using the
model (7), compute the vector valued potential with the vector
valued integral

y(t, u) =

2∑
k=1

[ t1∫

t0

w(uk(τ))|u̇k(τ)|im(zk(Θk(τ), t))dτ

+ w(uk(0))g(uk(0), t) + w(uk(1))g(uk(1), t)

] (9)

such that the potential at the electrode j is the j-th component
of y. Furthermore with ym(t) some measured potential at
the electrodes is given. For our optimal control problem we
then want to minimize the L2-norm of the distance between
measurement and simulation. Additionally we add a penalty
term which shall ensure that the speed of the curve is nearly
constant and equal in magnitude to a given reference velocity
vr. We get then the following optimization problem

min J(u) = ‖y(u, t)− ym(t)‖2L2([0,T ]) +
α

2
c(u) (10)

with

c(u) =

t1∫

t0

(|u̇(τ)| − vr)
2dτ
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5. NUMERICAL IMPLEMENTATION

In this section we take a closer look on how to solve the above
stated optimization problem. First we specify the geometric
setting. As domain Ω we choose a cuboid with size 10cm ×
10cm × 1cm. This cuboid shall represent an idealized piece
of some limb. We divide this cuboid into two horizontal layers
where the lower layer has a thickness of 8mm and represents
the muscle tissue. The second layer is 2mm thick and repre-
sents a fat layer under the skin. Furthermore we define the upper
boundary as Γ0 where the domain is bounded by skin. At the
other boundaries we assume that the domain would continue.
One can see a schematic view of this cuboid in Figure 4. On the

Fig. 4. Schematic view of the domain

time interval [0s, 0.015s] we generate artificial measurements
by forward simulation. The action potential is active in the
sub interval [t0, t1] = [0.0025s, 0.0125s], which is the domain
of the trajectories. Finite element discretization of the spaces
H1(Ω) and H1([t0, t1])

3 is performed as follows. We choose a
triangulation T of Ω and a triangulation U of the interval [t0, t1].
The domain Ω is thereby divided into tetrahedrons, whereas the
I is simply divided into n intervals. Using this triangulation
we can then define the space of linear ansatz functions for
H1([t0, t1])

3 and the space of quadratic ansatz functions for
H1(Ω) by

Vn := {v : [t0, t1] �→ R3 | v|K ∈ P1(K) ∀K ∈ U} ⊂ V

Wn := {w : Ω �→ R | w|K ∈ P2(K) ∀K ∈ T} ⊂ H1(Ω)

The corresponding finite element method is implemented with
the help of the finite element Toolbox Kaskade7 [Götschel et al.
(2012)].

5.1 Solving the adjoint problem

For the optimization it is essential to compute the weight
functions w by solving the adjoint problem and to be able to
evaluate them at each point in the domain Ω. Since we have to
compute, store and evaluate the weight functions efficiently, we
decided to use a hierarchically and adaptively built triangulation
of Ω. Therefore we first generate a coarse grid and refine it
globally to a certain mesh size. After that we refine then the
area where the electrodes are placed and the the area where the
optimal solution is expected to be. One possible triangulation
can be seen in Figure 5. We then use a Galerkin-Method to
solve the adjoint problem (7). As usual this leads to the discrete
replacement problem

find wn ∈ Wn s.t.
a(wn, η) = r(η) ∀η ∈ Wn (11)

Fig. 5. Mesh with about 750000 tetrahedrons. In the critical
region the mesh has been refined, a-priori.

With the usual techniques one can show that the bilinear form
a(·, ·) is V-elliptic and since r is a bounded linear functional
one knows from the Lemma of Lax-Milgram that the problem
(11) has a unique solution.

After finite element discretization we end up with a large
sparse linear system of equations that we solved with the
preconditioned conjugate gradient method. Here we use a BPX-
preconditioner [Bramble et al. (1990)], which takes advantage
of our hierarchic grid.

5.2 Evaluation of weight functions

As we have seen in (9) and (10), the objective function of our
optimal control problem depends on line integrals that involve
the weight functions wj , evaluated along given trajectories.
For optimization purposes we also have to evaluate spatial
derivatives of w, i.e., wx and wxx to compute the derivative
and the hessian of the objective, since a small perturbation of
uk leads to a perturbation of the points, where w is evaluated.

Since w is only available as a finite element function we cannot
expect wx to be continuous. Even more, wxx is only defined in
the interior of the tetrahedrons, and may not properly reflect
the global curvature of the solution. For example wxx = 0
for linear finite elements. Nevertheless, there are theoretical
results available (cf. Ovall (2007)) that indicate that second
derivatives of finite element functions of order higher than
one asymptotically approximate second derivatives of regular
solutions of elliptic PDEs. In our numerical experiments the
convergence behavior of our optimization algorithm depends on
the resolution of the finite element discretization (see Figure 8
below). We observe fast linear convergence, the finer the grid,
the faster the rate. The deeper understanding of this interesting
phenomenon is subject to current investigations.

The evaluation of the line integrals is performed by numerical
quadrature along uk. The necessary evaluation of the finite
element function w at a quadrature point x requires a search
for the tetrahedrons where x is located. To do this efficiently
we exploit that the quadrature points are ordered along the
trajectory and thus use a neighborhood search. If this fails, we
fall back to a hierarchic search over the whole grid.
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Fig. 6. Position of the electrodes and comparison of the reference trajectory (green), the start trajectory (red) and the computed
solution (dashed blue) in the xy-plane.

Fig. 7. Simulated measurement data at the array of electrodes. In each square the temporal signal of the corresponding electrode is
displayed.

5.3 Numerical solution of the optimization problem

To solve the minimization problem we use a simple SQP line
search method. This means in each step we compute a direction
of descent δu and a sufficient step size β. For the computation
of a step we establish a quadratic model of the functional by

J(u+ δu) ≈ mu(δu) := J(u) + J ′(u)δu+
1

2
qu(δu, δu).

The bilinear form

qu(δu, δu) = J ′′(u)(δu, δu) + γ‖δu‖2V×V

employs second order information of J . The term γ‖δu‖2V×V

is added to overcome possible indefiniteness of J ′′(u). So γ
is chosen adaptively to make qu positive definite, if J ′′(u)
isn’t. We thus have a modified Hessian-method which differs
from classical modified Hessian methods by the choice of
regularization term.

To get the direction of descent from this model one has then to
minimize mu(δu) over δu which is equivalent to solving the
variational problem

find δu ∈ Vn × Vn s.t.
q(δu, η) = J ′(u)η ∀η ∈ Vn × Vn (12)

Since u is defined on a one dimensional domain this problem is
of moderate size after discretization and can thus be solved by
a Cholesky factorization.

For the so computed direction it remains to compute a sufficient
step-size. We do this by using a simple backtracking algorithm
with Armijo acceptance criterion as one can find it e.g. in
[Nocedal and Wright (2006)]. Finally we get the following
simple optimization algorithm 1:
Algorithm 1. (line search).

choose u0

while J ′(uk)δuk > ε do
solve q(δuk, η) = −J ′(uk)η
compute step length β
uk+1 = uk + βδuk

end while

6. NUMERICAL EXAMPLE

To test the above described algorithm we first simulate a mea-
surement for a reference trajectory ũ. Therefore we choose a
measurement array of 63 electrodes, which are placed in three
rows of 21 electrodes above the reference trajectory. The elec-
trodes have the shape of circles with diameters of 2mm and
the distance between the centers of two neighboring electrodes
is 4mm. In Figure 6 we illustrate the setting, by plotting the
the position of the electrodes at the skin (black circles) and the
reference trajectory (green). We divide then our time interval
[0.0025s, 0.0175s] into 150 time steps and compute for each
electrode the potential yi(tk) at each time step tk. From this
measured potential one can then make an initial guess for the
starting trajectory by placing it in the regions were the highest
potential is measured. This is also a good option in practical
applications. In Figure 6 one can also see our choice for the
starting trajectory (red).

From this measurement we then identify the reference trajec-
tory with our optimization algorithm. For this example we as-
sume that we know the interval [t0, t1], the velocity v of the
signal, which is 4m

s , and the position of the neuro-muscular
junction u1(t0) = u2(t0). The position of the fiber ends u1(t1)
and u2(t2) and the depth of the trajectory are unknown and shall
be identified during the optimization.

We stop the algorithm when the energy norm of the gradient is
sufficiently small, i.e. J ′(u)δu ≤ 10−9. In Figure 6 one can see
the computed solution (dashed blue) compared to the reference
trajectory (green). One can see that the reference trajectory
is identified very well by the solution of our optimization
problem, the two graphs coincide.

To assess the influence of the discretization of the weight func-
tions we performed the optimization with two different grids
for the computation of w. In the first run we used approximately
750000 tetrahedrons. In a second run we reduced the mesh of
142000 tetrahedrons. It can be observed that both solutions are
quite similar in accuracy, but the rate of convergence differs
significantly. For the coarse solution, about 14 iterations are
needed, while the fine solution requires only 8 iterations. We
attribute this behavior to the fact that more accurate second
order information is available for the fine solution. To illustrate
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5.3 Numerical solution of the optimization problem

To solve the minimization problem we use a simple SQP line
search method. This means in each step we compute a direction
of descent δu and a sufficient step size β. For the computation
of a step we establish a quadratic model of the functional by

J(u+ δu) ≈ mu(δu) := J(u) + J ′(u)δu+
1

2
qu(δu, δu).

The bilinear form

qu(δu, δu) = J ′′(u)(δu, δu) + γ‖δu‖2V×V

employs second order information of J . The term γ‖δu‖2V×V

is added to overcome possible indefiniteness of J ′′(u). So γ
is chosen adaptively to make qu positive definite, if J ′′(u)
isn’t. We thus have a modified Hessian-method which differs
from classical modified Hessian methods by the choice of
regularization term.

To get the direction of descent from this model one has then to
minimize mu(δu) over δu which is equivalent to solving the
variational problem

find δu ∈ Vn × Vn s.t.
q(δu, η) = J ′(u)η ∀η ∈ Vn × Vn (12)

Since u is defined on a one dimensional domain this problem is
of moderate size after discretization and can thus be solved by
a Cholesky factorization.

For the so computed direction it remains to compute a sufficient
step-size. We do this by using a simple backtracking algorithm
with Armijo acceptance criterion as one can find it e.g. in
[Nocedal and Wright (2006)]. Finally we get the following
simple optimization algorithm 1:
Algorithm 1. (line search).

choose u0

while J ′(uk)δuk > ε do
solve q(δuk, η) = −J ′(uk)η
compute step length β
uk+1 = uk + βδuk

end while

6. NUMERICAL EXAMPLE

To test the above described algorithm we first simulate a mea-
surement for a reference trajectory ũ. Therefore we choose a
measurement array of 63 electrodes, which are placed in three
rows of 21 electrodes above the reference trajectory. The elec-
trodes have the shape of circles with diameters of 2mm and
the distance between the centers of two neighboring electrodes
is 4mm. In Figure 6 we illustrate the setting, by plotting the
the position of the electrodes at the skin (black circles) and the
reference trajectory (green). We divide then our time interval
[0.0025s, 0.0175s] into 150 time steps and compute for each
electrode the potential yi(tk) at each time step tk. From this
measured potential one can then make an initial guess for the
starting trajectory by placing it in the regions were the highest
potential is measured. This is also a good option in practical
applications. In Figure 6 one can also see our choice for the
starting trajectory (red).

From this measurement we then identify the reference trajec-
tory with our optimization algorithm. For this example we as-
sume that we know the interval [t0, t1], the velocity v of the
signal, which is 4m

s , and the position of the neuro-muscular
junction u1(t0) = u2(t0). The position of the fiber ends u1(t1)
and u2(t2) and the depth of the trajectory are unknown and shall
be identified during the optimization.

We stop the algorithm when the energy norm of the gradient is
sufficiently small, i.e. J ′(u)δu ≤ 10−9. In Figure 6 one can see
the computed solution (dashed blue) compared to the reference
trajectory (green). One can see that the reference trajectory
is identified very well by the solution of our optimization
problem, the two graphs coincide.

To assess the influence of the discretization of the weight func-
tions we performed the optimization with two different grids
for the computation of w. In the first run we used approximately
750000 tetrahedrons. In a second run we reduced the mesh of
142000 tetrahedrons. It can be observed that both solutions are
quite similar in accuracy, but the rate of convergence differs
significantly. For the coarse solution, about 14 iterations are
needed, while the fine solution requires only 8 iterations. We
attribute this behavior to the fact that more accurate second
order information is available for the fine solution. To illustrate
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this we compare in Figure 8 the energy norm of the gradient for
the different mesh sizes.

Fig. 8. Comparison of the energy norm of the gradient for
750000 tetrahedrons (blue) and 142000 tetrahedrons (red)

7. CONCLUSION

We have constructed a numerical algorithm that can take into
account the full spatio-temporal information, gained by high-
density sEMG measurements in order to locate motor units in
human muscles. It is based on an accurate finite element model
of the physiological situation. An adjoint approach makes the
problem tractable numerically. For a test problem our optimiza-
tion method converges in a few iterations and yields accurate
results.

In future research our method has to be applied to real mea-
surement data to assess the accuracy of our forward model
and the influence of modeling errors and noisy data on the
identified solution. From a numerical point of view, adaptive
solution techniques for the computation of the weight functions
as well as for the trajectories will be explored. Finally, a deeper
understanding of the accuracy of the spatial derivatives of w is
desirable, giving rise to further theoretical investigations.

REFERENCES

Alibert, J.J. and Raymond, J.J. (1997). Boundary control
of semilinear elliptic equations with discontinuous leading
coefficients and unbounded controls. Numerical Functional
Analysis and Optimization, 18(3-4), 235–250.

Andreassen, S. and Rosenfalck, A. (1981). Relationship of
intracellular and extracellular action potentials of sceletal
muscle fibers. CRC CriticalReviews in Bioengineering, 267–
306.

Bramble, J.H., Pasciak, J.E., and Xu, J. (1990). Parallel multi-
level preconditioners. Math. Comp., 55(191), 1–22.

Gootzen, T., Stegeman, D., and Van Oostrom, A. (1991). Fi-
nite limb dimensions and finite muscle length in a model
for the generation of electromyographic signals. Electroen-
cephalography and clinical Neurophysiology, 152–162.

Götschel, S., Weiser, M., and Schiela, A. (2012). Solving
optimal control problems with the Kaskade7 finite element
toolbox. In A. Dedner, B. Flemisch, and R. Klöfkorn (eds.),
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